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ABSTRACT: Classical thermodynamics is assumed to be valid up to a
certain length-scale, below which the discontinuous nature of matter becomes
manifest. In particular, this must be the case for the description of the vapor
pressure based on the Kelvin equation. However, the legitimacy of this
equation in the nanoscopic regime can not be simply established, because the
determination of the vapor pressure of very small droplets poses a challenge
both for experiments and simulations. In this article we make use of a grand
canonical screening approach recently proposed to compute the vapor
pressures of finite systems from molecular dynamics simulations. This
scheme is applied to water droplets, to show that the applicability of the
Kelvin equation extends to unexpectedly small lengths, of only 1 nm, where
the inhomogeneities in the density of matter occur within spatial lengths of
the same order of magnitude as the size of the object. While in principle this
appears to violate the main assumptions underlying thermodynamics, the density profiles reveal, however, that structures of this
size are still homogeneous in the nanosecond time-scale. Only when the inhomogeneity in the density persists through the
temporal average, as it is the case for clusters of 40 particles or less, do the macroscopic thermodynamics and the molecular
descriptions depart from each other.

I. INTRODUCTION

In describing the physical properties of matter, there is a certain
length-scale for which the assumptions of classical thermody-
namics break down because the discrete nature of matter
becomes manifest. How and when this transition takes place
between the macroscopic and the nanoscopic domains is one of
the most intriguing questions in statistical mechanics and in
many areas within condensed and soft matter sciences.1−4 The
vapor pressure and the surface tension are two paradigmatic
examples of those collective features that can not be grasped by
a continuous thermodynamical approach when it comes to tiny
droplets and nanoparticles.5−7 Yet, the comprehension of these
two properties is highly relevant, not only from a fundamental,
chemical-physics standpoint, but also because they determine
processes of central interest in materials engineering and
catalysis,1,3,8−11 as well as in environmental and atmospheric
chemistry, where they appear as essential ingredients in classical
nucleation theory (CNT).12−14 In particular, an accurate
assessment of the vapor pressure of nanoaggregates is not
easily accessible via experiments, neither through calculations.7

The Kelvin equation provides the vapor pressure (Pv) of a
droplet as a function of the radius of curvature r of the
interface:
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where P0 is the vapor pressure of the bulk substance, σ is the
surface tension, ρ is the density of the condensed phase, R is
the gas constant, and T is the temperature. For very small
droplets of just a few nanometers of diameter, the effect of
curvature on surface tension starts to be important. This can be
accounted for through the Tolman equation5
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with σ0 the surface tension of the planar interface, and δ the so-
called Tolman length,15 which assumes a characteristic value for
every fluid. The combination of eqs 1 and 2 can in principle
yield the dependence on radius of the vapor pressure.
Nevertheless, as the diameter of the droplet approaches the
nanometer scale, the validity of these expressions derived from
classical thermodynamics becomes questionable. There has not
been a general agreement regarding the limit of applicability of
these equations. On the basis of thermodynamic arguments or
numerical simulations, or even based on indirect experimental
evidence, different authors, including Tolman himself, have
situated it in disparate lengths, from only a few Ångströms to
some tens of nanometers.5,7,16−25 This limit has been explored
using Lennard-Jones potentials and molecular dynamics
simulations with constant number of particles.7,17−19,22 The
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vapor pressures computed using this route exhibit large
uncertainties, due to the small number of particles in the
vapor phase and to the infrequent collisions in the vapor.17,18

Different approaches based on Monte Carlo simulations have
been also applied to investigate this limit in the context of
CNT, reporting that the deviations from the classical theory
occur in a size range that goes from only four up to sixteen
molecular diameters, depending on the interaction potential,
the temperature, and the methodology.23−25 Many studies have
focused on the nucleation of small liquid droplets, aiming to
estimate size distributions and the formation free energies of
Lennard-Jones and water clusters as a function of temperature
and supersaturation.26−30 Zhukhovitskii devised a grand
canonical molecular dynamics scheme to identify the critical
cluster size of argon for different T−P conditions.26 To tackle
the same problem, Kusaka and collaborators later proposed a
coarse graining of the total volume in small compartments
containing in average no more than one molecule or aggregate,
with which they circumvented the issue of an arbitrary cluster
definition.27 Equilibrium distributions and free energies were
evaluated in the grand canonical ensemble from the probability
of finding a cluster of a given size in the coarse-grained volume.
Soon after, this method was generalized by incorporating
umbrella sampling and the potential energy as an order
parameter, allowing to characterize the free energy surface of
argon in terms of the number of particles and the energy of the
aggregate.28 Oh and Zeng implemented a canonical Monte
Carlo methodology where a restriction was imposed on the
maximum number of particles that a cluster can attain.30 This
strategy allows to sample a metastable situation that otherwise
could not be observed, and was employed to determine the
critical size and the formation free energy of argon clusters. A
rather complete overview on theoretical and simulation aspects
of the interfacial properties of nanoscopic liquid drops was
recently offered in a topical review by Malijevsky ́ and Jackson.31
In this article, we employ a simple grand canonical screening

(GCS) approach32 to calculate the vapor pressure of water
droplets in the range 1−4 nm diameter. This methodology, in
combination with first-principles DFT molecular dynamics,
allows us to assess the applicability and the limitations of the
Kelvin equation, and to analyze at the molecular level the cause
of its divergence with respect to the molecular description.

II. METHODOLOGY

A. Water Model. The mW coarse-grained model of water33

was employed to complete the large number of grand canonical
molecular dynamics simulations necessary to obtain the vapor
pressure curves reported in the next section. The mW potential
reproduces the energetics, density, and structure of liquid and
solid water and its phase transitions, with comparable or better
accuracy than most atomistic models, at nearly 1% of the
computational cost.33 This model represents each molecule as a
single particle interacting through anisotropic short-ranged
potentials that encourage “hydrogen-bonded” water structures.
It adopts the short-ranged interaction form of the Stillinger-
Weber force-field, which consists of a sum of two-body
attraction terms favoring high coordination, and three-body
repulsion terms reinforcing tetrahedral hydrogen-bonded
configurations.33 In recent years, the mW model has been
repeatedly applied to explain the behavior of water in various
conditions and regimes (see for example ref 34 and references
therein).

B. Molecular Dynamics Simulations. In this study,
molecular dynamics simulations were performed in the
canonical and grand canonical ensemble. Grand canonical
molecular dynamics (GCMD) schemes introduce Metropolis
Monte Carlo sampling throughout the dynamical evolution to
allow for particle exchange with a reservoir, hence preserving a
temporal description at a controlled chemical potential. The
movement of the particles is ruled by the integration of the
Newton equations using the Verlet algorithm at constant
temperature, which is controlled with the Nose-́Hoover
thermostat. Insertion and deletion attempts are effected on
single particles with equal probability and anywhere in the box,
adopting the usual acceptance criteria of the Monte Carlo
grand-canonical algorithm and assuming the vapor is an ideal
gas.35,36 Along the grand canonical dynamics, a number of
attempts for particle insertion and deletion are carried at every
time-step: this number is the so-called GC/MD ratio. It is
desirable to keep this parameter as low as possible to minimize
computer time, but in turn it must be high enough to ensure
that the target chemical potential is reached during the
simulation.37,38 GC/MD ratios in the range 20−100 have
been typically used in previous studies.37−39 In our simulations
a GC/MD ratio of 20 was adopted, which is common in the
literature and gives converged results for the systems examined
here. GCMD simulations were performed using a properly
modified version of the LAMMPS program.40

Classical and first-principles molecular dynamics of water
were performed to construct the density maps and density
profiles. Classical molecular dynamics were realized using the
LAMMPS program, with the same time-step as employed in the
GCMD simulations, equal to 5 fs. On the other hand, first-
principles dynamics were based on density functional theory
and the Car−Parrinello method,41 as implemented in the public
package Quantum-Espresso.42 These simulations were per-
formed in the microcanonical ensemble using a time-step of
0.19 fs, adopting the PW91 exchange-correlation func-
tional,43,44 Vanderbilt ultrasoft pseudopotentials,45 and a cutoff
of 25 Ry on the plane-waves basis set.

C. Calculation of the Vapor Pressure: the GCS
Approach. The grand canonical screening procedure to
compute the vapor pressure is described in detail in supraindex,
by ref 32. In the following, we give a brief overview of the
technique. According to classical nucleation theory,14 for a
given supersaturation or chemical potential μ, a critical cluster
size N* exists involving a saddle point in the free energy
surface. The vapor pressure of such a cluster is related to this
chemical potential by μeq = μθ + RT ln(Pv/Pθ). In the present
approach, to determine Pv for a nanodroplet of size N,
independent grand canonical simulations must be conducted,
each one at a different chemical potential. As the simulation
evolves, the total number of molecules may rise or drop,
depending on whether the magnitude of μ is, respectively,
above or below the equilibrium value μeq associated with that N.
For example, if the value of μ fixed in the simulation is above
the value of μeq corresponding to the initial curvature of the
interface (determined by N), condensation occurs leading to an
increase in radius, which in turn diminishes the magnitude of
μeq. In this way μeq experiences a gradual decrease, moving away
from μ, and thus the growth of the droplet continues until the
simulation box is completely filled. Conversely, if μ is below μeq
at the beginning of the simulation, the evaporation proceeds
until all particles have disappeared. By repeating this computa-
tional experiment for a given N at different chemical potentials,
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an upper and a lower bound can be established for μeq. The
uncertainty in Pv is then determined by the lower and upper
values of μ producing, respectively, the condensation and
evaporation of the droplet. It must be noted, though, that as the
chemical potential gets closer to μeq the ratio between particles
insertion and deletion tends to 1, implying that longer
simulations are required to discern between evaporation and
condensation. The error can hence be reduced at the expense
of computational time.32

In the case of very small clusters in the vicinity of the
equilibrium pressure, namely below 50 particles, the final
evaporation or condensation behavior is not uniquely
determined by the chemical potential but may depend on
“hidden variables” as the initial structure of the cluster, the
sequence of random numbers in the Monte Carlo run, or the
assignment of initial velocities from the Boltzmann distribution.
In other words, at the same chemical potential, two
independent trajectories corresponding to nanodroplets of
the same size might evolve distinctly to evaporation or to
condensation. This ambiguous behavior is only observed for
small N and follows from the fact that the stochastic
components of the computational experiment become more
important as the number of particles decreases. This is not a
serious problem as far as it is recognized and can be handled by
performing for each value of the chemical potential, a set of
several short trajectories, each one based on a different
sequence of random numbers or departing from different
initial configurations and velocities. In particular, μeq is chosen
as the value originating evaporation and condensation
trajectories with equal probability. The error bar for that
data-point can be similarly estimated on the basis of
condensation and evaporation probabilities. Here, 10 trajecto-
ries were performed for each data-point for N ≤ 94, with the
exception of N = 9 at the two highest temperatures, for which
25 trajectories were considered. The lower bound for the
uncertainty was chosen as the pressure for which the number of
trajectories leading to condensation was larger than 20%.
Similarly, the upper bound was given by the pressure above
which the evaporation probability (or, equivalently, the number
of trajectories producing evaporation) was less than 20%.
Further details on the computation of the errors can be found
in the supporting material.
We have shown in ref 32 that the GCS procedure described

above reproduces the vapor pressure of bulk water and argon
with a slightly better precision than the Gibbs-ensemble
approach. Moreover, we have computed the relative vapor
pressure for water aggregates of size ∼2 nm using both the mW
and the SPC/E models to find that the two force-fields lead to
the same results.32

III. RESULTS AND DISCUSSION

We applied the GCS procedure to determine the vapor
pressure of water aggregates of different sizes, from only 9
molecules up to 960. Figure 1 presents the logarithm of the
relative vapor pressure obtained from GCMD simulations with
the mW model at three temperatures as a function of the
inverse radius, compared with the results given by the Kelvin
equation. This data is also summarized in Table 1. Strikingly,
the thermodynamic formula reproduces the simulations for
radii as small as 7 Å with discrepancies below 5% at 278 K, and
even smaller for higher temperatures. For 298 and 318 K, the
Kelvin equation predicts the vapor pressure of water aggregates

with extraordinary accuracy all the way down to systems
composed of just 37 molecules, or nearly 1.2 nm of diameter.
The approximation shows discrepancies of up to 20%,

depending on temperature, for the cluster of 20 particles, and
definitely breaks for the one of 9 molecules, which exhibits
strong negative deviations for all three temperatures.
The magnitude and even the sign of the Tolman length (δ)

appearing in eq 2 has for long been a matter of debate, but
there is agreement that it must be of the order of the
intermolecular distances.15,31,46−55 For water, the value
originally proposed by Tolman was 1 Å,15 with many
subsequent estimations from theory and simulations falling
close to this former appraisal.48−52 The validity of these
estimations has nevertheless been disputed by a number of
studies claiming that the surface tension must increase with
curvature (which implies δ < 0),47,54,55 with a recent work
based on molecular dynamics simulations reporting for the
TIP4P/2005 water model a negative value of −0.56 Å.56 On
the other hand, the assessment of δ on the basis of experimental
data typically involves a number of assumptions and is
technically challenging, and this explains why consensus has
not been met either among experimentalists, who reported
Tolman lengths for water ranging from −0.47 to +0.6 Å.57,58

Whereas the curvature dependence of the surface tension and
the sign of the Tolman length remain controversial, there is
general agreement on the following: it must be very small in
magnitude, it depends on droplet size and temperature
(presumably decreasing with T), and its physical meaning is
lost when going to very small systems, in the order of a few
molecular diameters.31,51,53 In this context, it is remarkable that
the Kelvin equation matches our data with a Tolman length of
approximately zero until the cluster size reaches about 4
molecular diameters, with an abrupt failure below that range.
Such a good performance of the thermodynamic formulation

to describe these small objects may seem unexpected. In fact,
the Kelvin equation turns out to be valid in a region where the
inhomogeneities in the density of matter occur within spatial
lengths of the same order of magnitude as the size of the
aggregate, whereas among the major assumptions underlying
the thermodynamic treatment, there are (i) the homogeneity of
the surface and the continuous nature of the fluid, (ii) a
constant density inside the droplet, independent from radius,
and (iii) the sphericity of the aggregate. Clearly, these
requirements do not hold for the instantaneous configurations
of clusters consisting of less than a few hundred molecules, as

Figure 1. Logarithm of the relative vapor pressure of water
nanodroplets as a function of the inverse radius. Blue circles: grand
canonical screening results. The dashed and dotted lines show the
predictions of the Kelvin equation for different Tolman lengths. Black:
σ = σ0 (δ = 0). Orange: δ = −0.5 Å. Red: δ = 0.5 Å. Green: δ = 1.0 Å.
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can be seen in Figure 2, and as reflected in the nonequal
eigenvalues of the moment of inertia tensor, presented in the

Supporting Information. Interestingly, however, they do hold
for the temporal averages of their trajectories, displayed in the
density maps of Figure 3. Since the thermodynamic properties
are manifestations of the behavior averaged in the macroscopic
time-scale, it can be argued that the master equations remain
valid for those systems in which the dynamics smoothes down
the discrete, inhomogeneous structure of the nanoaggregate.
Figures 3 and 4 show that droplets of 1.2 nm diameter or larger
reasonably fit into this premise: they all exhibit a spherical
shape and a constant density along the most part of the
condensed phase, equal to 0.033 Å−3, which is the density of
bulk water. Smaller droplets depart from this paradigm: the
averaged density is not homogeneous, but presents a peak on
the boundary, while the sphericity is lost in shorter time
lengths. Coincidentally, the agreement between the Kelvin
equation and the simulations deteriorates at the same point

where the averaged density profile of the cluster starts to
become strongly inhomogeneous.
The effect of rotations on the density distributions were

checked by aligning the eigenvectors of the moment of inertia
tensors at each step of the molecular trajectories. No
appreciable differences were found when rotation was taken
into account, presumably because the liquid-like nature of these
clusters at room temperature produces continuous deforma-
tions in which the rotational and the internal degrees of
freedom are strongly coupled. The particular density
distribution observed for the smallest clusters has been
corroborated in the case of the 9 molecules aggregate by
means of ab initio molecular dynamics simulations (Figure 5),

Table 1. Relative Vapor Pressures (Pv/P0) and Radii (r, in Å) for Different Water Droplets Composed by N Moleculesa

278 K 298 K 318 K

N r Pv/P0 r Pv/P0 r Pv/P0

9 3.43 8.31 (3.61) 3.59 7.35 (1.96) 3.61 6.82 (2.63)
20 5.16 6.38 (0.62) 5.24 5.71 (0.72) 5.33 4.87 (0.64)
37 6.30 5.15 (0.63) 6.30 4.39 (0.51) 6.32 3.84 (0.53)
51 7.00 4.50 (0.42) 7.14 3.78 (0.39) 7.19 3.47 (0.34)
94 8.66 3.31 (0.27) 8.69 3.02 (0.14) 8.74 2.76 (0.23)
237 11.81 2.38 (0.02) 11.84 2.18 (0.02) 11.84 2.10 (0.03)
471 14.85 2.14 (0.02) 14.86 1.82 (0.02) 14.90 1.83 (0.03)
960 18.86 1.70 (0.02) 18.88 1.62 (0.02) 18.90 1.58 (0.02)

aAbsolute errors are given in parentheses. The values of P0 for the mW model at 278, 298, and 318 K, are, respectively, 0.13 mbar, 0.49 mbar and
1.50 mbar.

Figure 2. Instantaneous configurations of water clusters of different
sizes, randomly selected from the molecular dynamics simulations at
298 K. The shape deviation from sphericity is significant for systems
with less than 150 particles.

Figure 3. Bidimensional density maps of water droplets of different sizes at 298 K. Units for the color scale bar are Å−3. The densities were averaged
over time-windows of 100 ns for the smaller systems and 3 ns for the largest.

Figure 4. Time-averaged radial density profiles of water droplets of
different sizes at 298 K. The averaging was performed on NVT
molecular dynamics trajectories extended for at least 3 ns.
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which show that it is not an artifact of the mW potential. The
agreement between the classical and the DFT ab initio
calculations stems from the fact that both the mW and the
DFT dynamics explore the same regions in phase space. Figure
6 presents some representative instantaneous configurations

extracted from the classical and the quantum dynamics. Both
approaches produce the same structures, typically showing a
molecule in each one of the eight corners of a cube, plus a ninth
molecule off an edge. These geometries turn out to be
coincidental with the ab initio minimum energy configurations
of the cluster of 9 water molecules reported in the
literature.59,60 Therefore, we would not expect a substantial
improvement if the mW potential were to be replaced by an
atomistic or even a quantum-mechanical treatment: the
resulting vapor pressure is ultimately determined by the
magnitude of the intermolecular interactions, which classical
water force-fields are fitted to reproduce pretty accurately,
sometimes even better than obtained via first-principles
simulations (for example, within DFT-GGA the solid−liquid
transition temperature in water is off by around 140 K61).
Estimates to the vapor pressure of water nanodroplets can be

obtained from the literature related to classical nucleation
theory. Kusaka and collaborators applied a grand canonical
methodology to evaluate equilibrium distributions and free
energies of SPC/E water.27 The maxima in the free energy
curves of Figure 7 gives the critical cluster sizes,27 in fair

agreement with our own results. For example, for a super-
saturation P/P0 ≈ 5 at 298 K the critical cluster has
approximately 35 molecules, whereas for the same temperature
we find Pv/P0 = 4.39 for an aggregate of 37 mW molecules
(Table 1). The critical sizes are slightly overestimated in
Kusaka’s method with respect to our approach, this over-
estimation becoming more notorious for higher supersatura-
tions. The small discrepancies are attributable to the different
methodologies and, to a lesser extent, to the distinct potentials
(in previous work32 we showed that both the SPC/E and the
mW models give very similar relative vapor pressures for a
cluster of 94 molecules). The dynamical nucleation theory by
Schenter et al. provides a different route to the vapor pressure
of water clusters, based on the ratio between the evaporation
and the condensation rates.62,63 Figure 3 of ref 62 shows for P/
P0 = 10 that the rate constants αi and βi−1 reach the same value
for droplets of slightly above 40 molecules. The GCS procedure
predicts a P/P0 ratio close to 5.2 for clusters of this size at 278
K. The classical Kelvin equation, in turn, gives a relative vapor
pressure of nearly 5.6, meaning that while our approach yields
negative deviations from the Kelvin equation, the dynamical
nucleation theory technique would show positive deviations.
Part of this disagreement might be ascribed to differences in
temperature and force fields: simulations in ref 62 have been
performed at 243 K with a polarizable water model. Beyond
this particular result, it must be noticed that methods based on
CNT are designed to predict the evaporation and condensation
rates for a distribution of nanoaggregates of different sizes in
dynamical equilibrium. Our approach, instead, considers a
single droplet (or interface) in equilibrium with the vapor
phase, but isolated from any other cluster or interface. This is
the same situation described by the Kelvin equation, which may
explain why it shows a closer agreement with our results. A full
accord between the two methodologies should then not be
expected. The dynamical nucleation theory is a more powerful
approach since it gives information on a full distribution of
clusters. Moreover, CNT schemes provide evaporation and
condensation rates, which in GCMD would require a careful
validation to ensure that the time-evolution is quantitatively
realistic. On the other hand, dynamical CNT techniques rely on
more assumptions and parameters than our approximation,
which depends only on the force-field, and therefore we expect
it to be more accurate to predict the relative vapor pressure of
an isolated nanodroplet. In those CNT applications where, at
variance with dynamical nucleation theory, aggregates are
envisioned as independent entities in the vapor phase, with no
connection with clusters of other sizes, the framework of a
dynamical exchange of particles between a distribution of
droplets of different sizes is lost, and the critical cluster size for
a given supersaturation has to be consistent with the one
predicted from our analysis. Possibly, the present treatment
may be used in a complementary way to classical nucleation
theory methods, by providing values for the vapor pressures of
clusters that can be exploited in larger-scale models.
Our approach to the vapor pressure of clusters is

conceptually analogous to the one followed by Zhukhovitskii
to estimate critical sizes.26 In that work, a grand canonical
molecular dynamics scheme was proposed where the insertion
of molecules takes place at random positions on the system
boundary with velocities chosen from the Maxwell−Boltzmann
distribution, removing at the same time any molecule coming
from the simulation cell and traveling across this boundary.26 In
this way, the algorithm reproduces a vapor environment

Figure 5. Same as Figure 3, obtained for the droplet of 9 molecules
from ab initio molecular dynamics. The nonuniform density
distribution is due to an insufficient averaging time of 20 ps.

Figure 6. Different configurations of a cluster of 9 water molecules,
taken from quantum (A) and classical (B) molecular dynamics
simulations, based on DFT and on the mW model, respectively. For
the sake of comparison, only the oxygen atoms are depicted. Bars are
indicative of two atoms lying at less than 3.4 Å, which is the distance
between two water molecules forming an H-bond. The first image of
the series predominates along the dynamics in both approaches.
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corresponding to a desired temperature and pressure. To
identify the critical cluster size for different conditions, the
number of particles N was monitored as a function of time at a
fixed pressure and temperature, starting from different cluster
sizes. Two possibilities were observed for these trajectories:
evaporation or condensation, meaning respectively that the
initial size was below or above the critical value. This behavior
is analogous to the one observed in the GCS simulations, with
the only distinction that in our work different chemical
potentials were screened for a given initial size to determine the
vapor pressure, whereas Zhukhovitskii screened different initial
values of N for a fixed pressure to obtain the critical size.
Nevertheless, the two approaches are equivalent and provide
access to the same information, i.e., the size of the metastable
cluster associated with a given vapor pressure. The molecular
dynamics method proposed in ref 26 is likely to be better suited
to examine weakly interacting fluids as the Lennard-Jones
model, for which small clusters are difficult to stabilize in a
more conventional grand canonical framework. On the other
hand, our approach seems more appropriate for systems
exhibiting a low vapor pressure as water, where the application
of Zhukhovitskii’s scheme would require very large simulation
cells and long sampling times to ensure a reasonable exchange
of particles in the vapor phase that provides a converged
statistics.

IV. FINAL REMARKS

In summary, we have determined the vapor pressure of water
nanodroplets from 9 to 960 molecules. The results led us to
conclude that the Kelvin equation is valid as far as the
temporally averaged density of the water droplets exhibits a
homogeneous profile, which establishes a link between time
and the basic assumptions behind any thermodynamic
approach. This is in fact the case for droplets as small as 0.6
nm in radius at 278 K or even smaller at higher temperatures.
For water, this implies a radius of only two molecular
diameters, which is much smaller than the limit of around 10
molecular diameters for which the capillary approximation is
considered to be valid in the literature.31 A question remains on
the universality of the present conclusions, specially their
connotation for other nanosystems exhibiting different
structure and interactions strength. This topic will be the
subject of future investigations.
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